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Abstract1

Knowledge spillovers are central in modern theories of innovation and growth. There is a large gap, 
however, between the recognition of the role of spillovers in several theories and the empirical 
appreciation. In this paper we explore a new approach to the measurement of spillovers. This is 
based on the exploitation of a recently developed family of techniques in nonparametric efficiency 
analysis, which allow the estimation of the impact of external factors on the technical efficiency of 
productive units. We advocate the use of these tools and give a demonstration of their potential, 
using data at territorial level for Italy.
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1. Introduction

After two decades of intense research the notion of spillover, while extremely powerful in theory, 
still proves elusive in the empirical analysis. There is still a large gap between the recognition of the 
role of spillover in several prominent economic theories and the methods used for the empirical 
appreciation. 
In this paper we explore a new approach to the measurement of spillover, which radically departs 
from the econometric approaches followed in the literature.
The  approach  is  based  on  the  exploitation  of  a  recently  developed  family  of  techniques  in 
nonparametric efficiency analysis, which allow the estimation of the impact of external factors on 
the technical efficiency of productive units (Daraio and Simar, 2005; 2007). While traditionally a 
number  of  conceptual  and  practical  issues  have  severely  limited  the  use  of  nonparametric 
techniques, the new developments solve these issues and deliver a flexible and powerful set of 
tools.
The paper is organized as follows. In Section 2 a short discussion of the theoretical status of the 
notion of spillover and of existing econometric approaches is carried out. In Section 3 the notion of 
conditional robust nonparametric efficiency is introduced, leaving technical details to the Appendix. 
Section 4 proposes a definition of knowledge spillover as the combined impact of the innovative 
and scientific activities on the efficiency of the manufacturing industry, and applies it to data on 
production activity at local (province) level in Italy. Spatial dependence effects are considered in the 
estimation. The magnitude and distribution of knowledge spillovers from the overall (combined) 
volume  of  patenting  and  publication  activity, from the  intensity  of  this  activity, and  from the 
sectoral  specialization of publications are investigated.  The identified dimensions of knowledge 
spillovers are largely discussed and policy implications derived. Section 5 discusses possible lines 
of inquiry including applications to tertiary activities,  extensions to alternative specifications of 
spatial  dependence factors,  and inclusion of  robust  efficiency estimates  in  general  input-output 
models.

2



2. Issues in the identification and measurement of spillover effects

2.1 A crucial theoretical role

Spillovers are positive externalities generated by those agents that invest in certain activities and 
cannot prevent other agents to benefit from these activities. More specifically, knowledge spillovers 
refer to the fact that firms can benefit from knowledge generated by others (i.e. by other firms, 
including rival firms; or public institutions, in the same industry or territory, or elsewhere) without 
having  to  pay  for  them.  Knowledge  spillovers  take  various  forms:  collaboration  between 
researchers, mobility of researchers and technicians from academia to industry and vice versa or 
within  the  industry,  informal  exchanges  of  ideas,  unintended  information  disclosure,  reverse 
engineering of easily available rival products. In all these cases knowledge cannot be considered as 
a  production  factor  stricto  sensu,  because  companies  do  not pay  for  them.  They  benefit  from 
knowledge produced elsewhere,  that is accessible without the need to pay the full cost (although 
some positive cost of absorption is needed).
The whole theory of spillover effects is affected somewhat by a paradox: there is no correspondence 
between  the  large  theoretical  role  of  knowledge  spillovers  in  a  number  of  areas,  and  the 
sophistication of empirical methods used to capture them. The larger the theoretical importance, the 
more elusive the identification and measurement.
On one hand, in fact,  spillovers are clearly relevant in many areas of economic theory: general 
equilibrium, theories of growth, economics of innovation, economic geography, and international 
economics. Without any ambition of completeness, let us briefly recall the most important ones.
In  general  equilibrium theory and public  economics,  it  is  clearly relevant  as  an explanation of 
market failure and as a foundation for State intervention in research and innovation, following the 
classical treatment of Nelson (1959) and Arrow (1962). The existence of spillover is at the core of 
the discrepancy between the private and the social rate of return of the investment into knowledge 
production. 
The notion of spillover is firmly rooted in the idea that knowledge is not fully appropriable. If 
knowledge  were  appropriable,  then  there  would  be  perfect  correspondence  between  private 
investment and private return, so that at the margin the market value of knowledge would be equal 
to the private cost.  Therefore the notion of spillover is a very fundamental one, directly linked to 
the core of the theory of knowledge as an economic activity (Foray, 2004).
In theories of growth, it has been crucial to the attempt to explain persistence of positive and large 
rates of growth of advanced countries by endogenous growth theory (Romer, 1986; 1990) and neo-
schumpeterian theories (Aghion and Howitt, 1992; 1998; Jones, 1995). In these fields the crucial 
point is that knowledge, as opposed to other factors of production, is not subject to diminishing 
returns. Diminishing returns appear to be an extremely general and robust feature of production 
factors, and are responsible for the inevitable tendency of economies to converge to a steady state 
rate of growth, implying that rich countries should, in the limit, grow less and less. If knowledge, on 
the contrary, is subject to increase in productivity with use, then an explanation is offered for the 
persistence  of  large rates  of  growth  in  advanced  economies.  Again,  the  notion  of  spillover  is 
essential for the argument of increasing returns: while it is true that the individual use of knowledge 
generates increasing returns, the order of magnitude of this effect would be modest if each company 
might entirely appropriate the benefit, without generating positive externalities for other companies. 
The externality component is a large portion of the overall increasing return effect.
In the economics of innovation the interest for knowledge spillover follows several streams. An 
important literature has dealt with the benefit that the public sector research can bring to industry, 
by  generating  flows  of  knowledge  mediated  by  professional  roles  of  individuals  and  personal 
interaction. In this literature the main channels through which knowledge is expected to flow are 
personnel mobility (Almeida and Kogut, 1999; Saxenian and Hsu, 2001), and personal interaction 
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between researchers and managers, as documented by paper trails in patents and location decisions 
of firms (Jaffe et al., 1993; Zucker and Darby, 1996; Zucker, Darby and Armstrong, 1999). Here a 
certain interest is in examining whether the tacit nature of knowledge requires forms of interaction 
between universities and firms that benefit from co-location in the same area (Mansfield, 1980; 
Jaffe, 1989; 1996; Anselin, Varga and Acs, 1997; Varga, 1998; Cohen, Nelson and Walsh, 2002).
Another stream of literature in the economics of innovation deals with the idea that the investment 
into R&D in one industry may benefit indirectly other industries by providing new intermediate 
goods as inputs or new production technologies, for which the recipient industry has not paid the 
full  cost.  The  econometrics  of  inter-industry  flows  of  knowledge  (Scherer  1982;  Link,  1983; 
Griliches  and  Lichtenberg,  1984;  Bernsten  and  Nadiri,  1988;  1989)  has  done  a  great  job  in 
producing estimates of the order of magnitude of this effect.
Finally, a large stream of studies in the economics of innovation deals with the role of multinational 
corporations as sources of spillovers. This may take place in two main forms: flows of knowledge 
from multinational companies to host countries and viceversa (Blomstrom and Kokko, 1998; Barrell 
and Pain, 1999; Aitken and Harrison, 1999; Cantwell and Iammarino, 2001) in particular via human 
capital  mobility  (Fosfuri,  Motta,  Ronde,  2001),  and  flows  of  knowledge  within multinational 
companies (Almeida, 1996; Gupta and Govindarajan, 2000; Frost, 2001; Szulanski, 2006). Here an 
important  theoretical  contribution  is  the  idea  that  multinational  companies  act  as  governance 
mechanisms, internalizing transactions and permitting a more efficient utilization of knowledge. 
While  a  large  part  of  this  effect  is  intentional  and  planned,  large  spillovers  still  take  place. 
Conversely, there are also powerful organizational mechanisms that prevent knowledge flows.
The idea of spillover is also central to the new economic geography (Krugman, 1990; 1991) and the 
theory  and  empirics  of  geographical  agglomeration  of  industry  (Ottaviano  and  Puga,  1997; 
Rosenthal  and Strange, 2004).  Knowledge spillovers are considered one of the mechanisms for 
agglomeration, alongside input sharing and labour pooling mechanisms (Rosenthal  and Strange, 
2004). The idea is that companies may find it convenient to co-locate with rival companies, in the 
expectation to benefit from unintended information leakage or informal exchange of knowledge. In 
this literature an important overlapping has been created with the economics of innovation, since 
both literatures are strongly interested in explaining the  geography of innovative activities (see 
among others Feldman, 1994; Audretsch and Feldman, 1996; Jaffe, Trajtenberg and Henderson, 
1993; Autant-Bernard, 2001; Bagella and Bechetti, 2002; Orlando, 2004). The keen interest on this 
issue comes from theoretical and practical considerations. From the theoretical point of view, it is 
interesting to observe whether the continuous creation of scientific and technological opportunities 
produces a geographic dispersion of activities, generating opportunities for less favoured regions 
and territories, or rather it reinforces existing agglomerations, or strong areas. Empirically, it has 
been repeatedly observed, particularly in Europe, that research activities tend to cluster in large 
metropolitan  areas  (typically  around  the  large  capital  towns)  and  in  high  tech  regional 
agglomerations of large size and intensity (Carrincazeaux, Lung and Rallet, 2001).
Finally, international spillovers of knowledge are considered as one of the main sources of growth 
for less developed countries, particularly for those engaged into catching up (Kokko, 1994; Coe and 
Helpman,  1995; Kokko,  Tansini and Zejan,  1996;  Gwanghoon,  2005).  While  earlier  models of 
North-South  divide  considered  technology  flows  only  in  the  form  of  capital  investment  from 
advanced  countries  to  less  developed  countries,  more  recent  models  incorporate  the  notion  of 
knowledge spillover, allowing for a variety of potential effects.
As this short and highly incomplete review clearly shows, there are several large areas of economic 
theory that place the notion of spillover at their core.
Rebus sic stantibus, one would expect a great deal of methodological work to be carried out in order 
to refine the concept and develop new measurement and estimation approaches. This is not the case, 
however. There are, in fact, several unsolved conceptual problems.
First of all, is knowledge a production factor? Is it separated from embodiments, such as labour or 
machinery? 
Assuming knowledge as a direct productive factor has several advantages, using proxies such as 
R&D  expenditure  or  R&D  stock.  Pursuing  this  avenue  of  research  seems  promising,  in  the 
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perspective of building a knowledge production function (Griliches, 1992) in which the source of 
spillovers is explicitly modelled. Alternatively, R&D stock, or the share of workforce allocated to 
research  activities,  can  be  modelled  to  influence  total  factor  productivity.  Whatever  the 
specification,  empirical  analyses  of  knowledge  based  on  production  functions  are  somewhat 
puzzling: the magnitude of effect of R&D on growth, once one admits a role for imitation, is not as 
large as posited by the theory ((Jones, 1995; Comin, 2002). 
At  a  fundamental  level,  is  knowledge  an  input  to  the  production  process,  as  suggested  by 
endogenous growth, or is rather an output, or both? If one admits that knowledge is  both an input 
and an output, then the conventional production function approach becomes totally inadequate.
Second, which are the specific channels for knowledge spillovers? And are there differential effects 
across various forms of spillovers? This issue has been addressed only recently by studies that 
identify and map specific spillover mechanisms, such as personnel mobility. Using the notion of 
spillover too broadly may indeed create a situation of catch-all explanation, reducing the analytical 
power (Breschi, 2000). 
Third,  which is  the  level of  analysis? Studies  that  are explicit  on mechanisms of  spillover  are 
usually based on surveys on individual firms. On the contrary, econometric exercises (see infra) try 
to  capture  an  aggregate  effect,  but  are  vague  about  the  specific  mechanisms.  As  an  example, 
considerable evidence has been collected on paper trails based on citations in patents: suppose this 
is accepted evidence for a specific mechanism of knowledge flow. What would be the aggregate 
effect on the economy?
Finally, there are technical problems in the use of stock of knowledge measures, as proposed by 
Griliches (1979) and developed, for example, by Adams (1990; 1993). In fact, the measure of stock 
is heavily dependent on time horizon and the rate of depreciation and there is no way to normalize 
these  variables.  By  changing  slightly  the  rates,  for  example,  one  can  obtain  wildly  different 
estimates of the stock of knowledge.
Therefore, despite more than twenty years of intense research, the notion of knowledge spillover 
has not yet found a firm foundation.

2.2 Econometric issues

In addition to conceptual and definitional issues, there are also a number of technical problems in 
the econometric analysis2. There are several approaches to the estimation of knowledge spillover 
effects.

Indirect estimation

An important stream of literature derives the magnitude of spillover effects from the difference 
between private rates of return and social rates of return in R&D investments (see for a survey 
Dowrick, 2003; Wieser, 2005). As it is well known, there is a large difference between the two in 
most published case studies and this is taken as sufficient evidence of the existence of spillovers. 
The idea is that the social benefits from knowledge are much larger than the private ones because 
knowledge flows from private firms through mobility of key employees, leakage of strategic and 
technological information, reverse engineering of innovative products. The typical range of private 
rates of return in most studies, in the order of 20-30%, does not exceed to a great extent the average 
rate  of  return  from  physical  assets,  adjusted  for  risk.  This  confirms  that  R&D  investment  is 
economically sound, but not exceedingly attractive per se. On the contrary, the social rate of return 
is usually very high, in the order of 50% and beyond, implying a large positive externality for 
society. If  these  values  were  to  be  taken  into  account  at  face  value,  they  would  imply  that 
knowledge spillover effects are of the same order of magnitude of appropriable benefits.
2 For an extended discussion of the limits of conventional econometrics in these fields see Bonaccorsi and Daraio 
(2004).
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Survey

A number of studies are based on field surveys in which the evidence for knowledge spillover is 
directly searched (Mansfield, 1980; 1991; 1998; Beise and Stahl, 1999; Wieser, 2005).
Here  problems  of  memorization,  ex  post  rationalization,  and  categorization  on  the  part  of 
respondents may apply and distort the measure.
While this approach sheds light on the microfoundations of spillovers, it is difficult to generalize 
and to build up an estimate at aggregate level.

Direct estimation: (a) cross effects

By a large margin the most used econometric approach has been including spillover effects directly 
in the specification of equations, usually in the production function.
Thus, alongside the regressor representing R&D expenditure at time t for firms i, the expenditure of 
all other firms in the same industry, or in other industries, or in other regions or local systems, are 
directly included in the equation. 
Another important stream of analysis has considered that a source of spillover is the possibility for 
firms to purchase intermediate products that incorporate technical progress, for which they have not 
paid. Therefore the structure of input-output flows (at the level of industries), or the structure of 
international trade (at the level of countries) can be used to approximate the structure of flows of 
knowledge.
The direct approach requires the ex ante specification of the direction of impact of spillover in order 
to include the cross-effect among the variables of the equations. 

Direct estimation: (b) spatial dependence

One of the crucial dimensions of spillovers is, of course, the spatial one. Knowledge produced in 
local  area  A may  reach  firms  in  the  region  B,  with  a  probability  and/or  intensity  inversely 
proportional to the distance.
In order  to take into account these  effects,  a  dedicated literature  has  developed techniques for 
disentangling spatial dependence from other effects (Anselin, 1988; Abreu, Florax, de Groot, 2005). 
These techniques make the spillover effect a function of the distance matrix between any pair of 
points in the geographic space, associated with a series of distance functions that may reflect a 
variety of effects. The estimates are much more precise and robust this way. With respect to the 
previous  approach,  spatial  dependence models  leave open  the  direction  of  impact  of  spillover, 
observing the effects ex post, instead of modelling interaction effects ex ante.

From a methodological point of view, the approach to knowledge spillover is subject to a dilemma.
If one wants to be precise on the spillover mechanism, the only reliable technique is survey-based, 
but then it is almost impossible to produce an aggregate estimate.
If, on the other hand, one is interested in the overall effect of knowledge spillover there is no way 
other than including various proxies of knowledge production directly in the equation. But in this 
way we are forced to accept the notion that, in order to have a spillover effect, the source of the 
spillover must be a production factor.
The crucial point is that many relevant sources of spillover are not production factors. They are not 
consumed in the activity of production, nor substituted by via investment decisions. They may 
affect productivity of firms without being channelled through production factors, or the purchase of 
intermediate goods incorporating technical progress generated in other industries. This creates a 
difficult dilemma, one that, to the best of our knowledge, is still unsolved in the literature.
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3. Introducing conditional efficiency

Nonparametric efficiency analysis has a long history in the area of productivity analysis, but has 
rarely  been  applied  to  the  economics  of  growth.  One  reason  behind  this  is  that  conventional 
techniques,  such  as  Data  Envelopment  Analysis,  suffered  from  various  methodological 
shortcomings, which  made their use difficult (Bonaccorsi and Daraio, 2004). A recent wave of 
nonparametric  techniques,  called  robust  or  order-m  frontiers  and  illustrated  in  detail  in  the 
Appendix, solves for most of these limitations, and in particular for the influence of outliers and 
extremes in the data (from this feature comes their names of “robust”).
One of the main areas of development of robust techniques is the so called conditional efficiency 
analysis3. The central idea is to reformulate the production process in a probabilistic setting, so that 
it is possible to condition the production activity to the impact of external factors without assuming 
ex ante the sign of impact itself. If these factors do not exert any impact, the conditional measure of 
efficiency will be equal to the unconditional one. The central role in conditional efficiency analysis 
is  then played  by  the  ratio  between conditional  and unconditional  efficiency. In  the  following 
application we use robust nonparametric measures, namely order-m efficiency measures (Daraio 
and Simar, 2005)  and then analyze the  ratio  of  robust  conditional and unconditional efficiency 
called  Qz

m.  In  this  paper  we  adopt  the  output  oriented  framework,  in  which  the  goal  of  the 
production unit is assumed to be maximizing the quantity of output given the available inputs.
For each unit of observation this ratio takes a numerical value. If the value exceeds one, it means 
that external factors have an impact on the productive efficiency. 
As shown formally in Daraio and Simar (2005), the scatterplots of these ratios and a smoothing 
nonparametric regression offer an intuitive and useful representation. The plot may exhibit irregular 
shapes, however, fully taking into account individual cases.
Scatter diagrams that represent the impact of Z can be interpreted as follows (for more details, see 
Appendix). The vertical axis represents the ratio between conditional and unconditional efficiency. 
The horizontal axis represents the value of the external variable Z. A line is drawn representing the 
nonparametric  regression  of  the  ratio  over  the  Z variable,  and can be  read as  a  local  average 
approximation.  In  the  output  oriented  framework  adopted  here,  an  increasing  pattern  of  this 
nonparametric regression line points to a positive effect of the external factor Z on the performance 
of the analyzed system of units. A decreasing pattern of the nonparametric regression line points to 
a  negative effect of the external factor Z. A straight pattern of the nonparametric regression line 
indicates  no effect of the external factor Z. This technique is flexible enough to decompose the 
conditional  efficiency  score  for  each  unit  of  observation.  The  technique  allows  also  the 
investigation of the effect of external  factors taken separately or jointly. In the latter  case it  is 
possible to capture partial and interaction effects observing the 3-dimensional plot.

The main idea of our paper is to measure the knowledge spillover effect as the combined impact of 
innovative and scientific activities on the efficiency of the production process carried out at local 
(province) level. In order to illustrate the potential of conditional efficiency analysis we use an 
original dataset, disaggregated at the Italian territorial level of province, built by combining several 
sources.  From the  total  number  of  provinces in  Italy, 109,  we excluded some recently  created 
provinces whose data for the analyzed period (2001-2003) were not available, and a number of 
provinces that  for which some data were not available. Finally, our sample is composed by 92 
observations. A description of the variables analyzed in the paper is presented in Table 1.

3 See Daraio and Simar (2007) for a state of the art presentation of the techniques. Bonaccorsi and Daraio (2007) 
illustrate the potential of these methods in the microbased analysis of universities.
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Role Variable Description
Input (X_1) ULA IND No.  of  employees  in  manufacturing industries – at  province level 

(source: ISTAT - Italian National Statistical Office,  Conti pubblici  
provinciali). Average 2001-2003. Thousand units.

Input (X_2) IP Proxy of the infrastructural stock at province level (Picci, 2002)
Input (X_2’) DPM Alternative proxy of the infrastructural stock at province level (Di 

Palma and Mazziotta, 2002)
Input (X_2’’) KPUB Share of public capital stock, allocated in proportion to total value 

added. Year 2001 (Picci, 2002)
Input (X_2’’’) KPUB1 Share of public capital stock, allocated in proportion to number of 

employees (ULA). Year 2001 (Picci, 2002)
Input (X_3’) KPRIV Share of private capital stock, allocated in proportion to total value 

added. Year 2001 (Picci, 2002)
Input (X_3’’) KPRIV1 Share of public capital stock, allocated in proportion to number of 

employees (ULA). Year 2001 (Picci, 2002)
Output (Y) VA IND Added value of manufacturing industries, at province level (source: 

ISTAT -  Italian  National  Statistical  Office,  Conti  pubblici  
provinciali). Average 2001-2003. Million current euro.

External factor (Z_1) PAT TOT Cumulate  number  of  EPO  patents,  1999-2003.  (source: 
Unioncamere)

External factor (Z_2) PUB TOT Cumulate number of ISI publications, produced by universities and 
other  research institutions at  province level,  1990-2000.   (source: 
elaboration on ISI data from CRUI)

External factor (Z_3) PUB TECH TOT Cumulate  number  of  ISI  publications  in  the  Engineering  and 
Technology fields  of  science,  produced  by  universities  and  other 
research  institutions  at  province  level,  1990-2000  (excluding 
Construction engineering)

External factor (Z_4) PAT INT Patent  intensity:  No.  of  EPO  patents  (PAT TOT)  per  million  of 
inhabitants

External factor (Z_5) PUB INT Total publication  intensity:  Cumulate  number  of  ISI  publications 
(PUB TOT) per million inhabitants

External factor (Z_6) PUB TECH INT Engineering and Technology publication intensity: Cumulate number 
of  ISI  publications  in  the  Engineering and  Technology fields  per 
million inhabitants, 1990-2000 (excluding Construction engineering)

Table 1. Variables used in the models 

In Tables 2 and 3 descriptive analyses of inputs, outputs and external factors are proposed.
The province level of analysis allows a fine grained observation of spillover effects. Clearly, the 
smaller the geographic size of the unit of analysis, the larger the spillover from activities that are not 
located in the same area, but in the close neighborhood. 
In  order  to  take  into  account  this  possibility  we  model  spatial  dependence  in  patents  and 
publications by assigning to each province its own number plus the numbers of all other provinces 
weighted by the ratio one divided by the distance (in km). This operationalization is consistent with 
most literature on geographic spillovers.

Table 2 Descriptive statistics on inputs and output

Range Minimum Maximum Mean Std. Deviation

ULA IND 509 5 514 54 67

 IP 598 36 634 100 83

 DPM 156 27 184 96 32

K PUB 66301 1639 67940 10219 10025

K PRIV 106026 1380 107406 9735 13465

K PUB1 63907 1859 65766 10204 9517

K PRIV1 98119 1555 99675 9717 12693
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VA IND 32052 190 32242 2692 3940

Table 3 Descriptive statistics on external factors

Range Minimum Maximum Mean Std. 
Deviation

PAT TOT 3927 14 3941 218 453

PAT INT 1301 22 1323 275 261

PAT TOT AVE 803 3 806 46 93

PAT INT AVE 270 4 274 58 55

PUB TOT 89486 654 90140 8384 14465

PUB INT 70904 787 71691 10150 12826

PUB TOT AVE 10879 77 10956 1003 1717

PUB INT AVE 8720 96 8816 1221 1513

PUB TEC TOT 3143 19 3163 276 489

PUB TEC INT 2665 20 2685 313 440

PUB TEC AVE 286 2 288 25 44

PUB TEC INT AVE 243 2 245 29 40

COMP MAN 2.381 0.041 2.422 0.853 0.464

COMP TOT 0.528 0.005 0.533 0.198 0.130

APE TOT 1.255 0.020 1.274 0.373 0.231
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We study how the availability at province level of several sources of knowledge influences the 
efficiency of production activity of the manufacturing industry. We consider units of labor and 
physical infrastructure as inputs, and industrial value added as output. We condition the efficiency 
of production process to the operation of sources of spillovers: industrial innovation activity, as 
measured  by  patent  applications;  and  research  activity, as  measured  by  international  scientific 
publications. These two sources of knowledge can be read, with some approximations, as coming 
from the private and the public sector, respectively. The estimation strategy is hence to measure the 
knowledge  spillover  as  the  combined  impact  of  these  sources  of  knowledge  on  the  technical 
efficiency of production.
Following the literature, we select the manufacturing industry as the main target for knowledge 
spillover  flows,  following  the  literature,  although it  is  increasingly  recognized that  the  role  of 
tertiary activities in growth is not negligible (see for example Kay, Pratt, Warner, 2007).
The main interest is not developing new theories of knowledge spillovers, but rather to leverage on 
existing contributions (mainly on specific channels for knowledge flows) and estimate a global 
effect at a sufficiently disaggregated territorial level to capture all relevant factors. Most literature 
on spillovers deals, due to the omnipresence of data constraint, with data at regional level. At this 
aggregation  level,  however, it  is  difficult  to  ascribe  estimated  effects  to  the  channels  usually 
discussed in the literature, because the latter have to do with various forms of labour mobility and 
personal  interaction,  which  mostly  take  place  at  infra-regional  level.  We believe  the  level  of 
province is the most appropriate one.
Also, we use for the first time data on publications at province level, allowing to finely identify the 
effect of local presence of universities and research centers. For these data we take a longer time 
series (1990-2000) than for patents (1998-2003), following the idea that the impact on productivity 
and growth of scientific research has a longer time lag than industrial research, as witnessed by 
patents.
Using the variables described in Table 1 we estimate several simple models with an exploratory 
purpose. In particular, as proxy of the infrastructural stock we use the IP stock proposed by Picci 
(2002), in which the permanent inventory technique was applied to reconstruct the infrastructural 
index  of  the  province.  Alternatively,  we  compare  the  results  obtained  by  using  the  DPM 
infrastructural index, proposed by Di Palma and Mazziotta (2002), which is based on the stock in 
physical  terms.  The  obtained  results  (using  IP or  DPM as  proxy  of  the  infrastructures  of  the 
provinces) are very similar, hence in the following we report mainly those obtained using as input 
the IP index.
Descriptive  plots  of  patent  activity  volume  versus  patent  intensity  and  of  publication  activity 
volume against publication intensity are reported in the following figures.
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Figure 1. Plot of Patent size (PAT TOT) versus Patent intensity (PAT INT). 

Figure 1 compares the size of inventive activity at province level (patent size, PAT TOT) with the 
relative importance of patenting with respect to the population living in the province (PAT INT). 
One stylized fact is immediately evident: while there are only one large inventive area (Milano) and 
only two large provinces (Bologna, Torino), there are many provinces where cumulative patent 
activity  is  small  in  size  (less  than  1,000)  but  very  high  in  density. These  provinces  (Modena, 
Vicenza, Reggio Emilia, Parma, Treviso, Bergamo, Como) are all located in Northern Italy, are 
medium-sized,  and  their  economy  is  largely  based  on  a  strongly  competitive  mechanical 
engineering industry.
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Figure 2 Plot of Publication size (PUB TOT) versus Publication intensity (PUB INT)

A very different picture comes to evidence for publications (Figure 2). Here there are two large 
agglomerations (Milano, Roma) and a few provinces with a significant volume of scientific activity, 
centered around large cities (Napoli,  Torino, Genova, Firenze,  Padova,  Bologna).  However, the 
stars in terms of publication intensity are small to medium-sized research oriented cities, such as 
Trieste, Pisa, and Pavia. These cities are not particularly strong in manufacturing activity, not have 
an intense patenting activity.
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Figure 3 Plot of Total Publication in Engineering and Technology (PUB TEC TOT) versus 
Publication intensity in Engineering and Technology (PUB TEC INT)

This  finding  is  confirmed,  with  only  a  few  variations,  for  publications  in  Engineering  and 
Technology (Figure 3).

Figure 4 combines the two dimensions of knowledge production in terms of intensity. It is clear that 
few provinces are specialized in both scientific and inventive activity.
To see this effect, one would usually position each province against the average. But since the 
variability in intensity is quite large, and the vast majority of provinces fall at small levels, it is 
better to define quadrants by taking the average value plus one standard deviation (see Table 3 for 
values). By doing so we see that the fourth quadrant (high high) is almost empty (Mologna, Milano, 
Parma) while the diagonal is densely populated. In particular, a certain dichotomy is found between 
provinces rich in science but relatively poor in patents (Pisa, Trieste, Padova, Pavia, Firenze, Siena, 
Genova, Ferrara) and provinces that follow the opposite pattern.
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Figure 4 Plot of Publication size (PUB TOT) versus Patent intensity (PAT INT)

Interestingly a similar dichotomic pattern emerges if we focus only on technical publications and 
plot their intensity against patent intensity (Figure 5). Here, again, the diagonal is populated while 
the fourth quadrant is almost empty. This is somewhat surprising, given that scientific research in 
engineering disciplines should have closer relations with industrial applications. It seems that the 
industry located around Italian engineering schools does not benefit greatly from research activity. 
This mismatch is likely to have a sectoral explanation, but should be investigated further in the 
future.
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Patent  intensity (PAT INT)

Given this pattern, it is interesting to investigate the existence and magnitude of spillover effects on 
productive activity.
More specifically, there are several puzzling questions:

- does size matters? Do we see that spillover effects are larger in larger provinces and cities, 
or  beyond a given threshold?

- is knowledge intensity a substitute for knowledge size? In other words, do provinces with 
high intensity but small size benefit from large spillovers?

- given the dichotomy between patenting and publishing for most provinces, where are 
spillover larger?

- are publications and patents complementary in producing spillover effects?
These questions are not only interesting for the national case at hand, but more generally for a 
number of theoretical and policy implications. 
Before entering into the estimation exercise, let us introduce Figures 6 to 11, which offer a detailed 
cartography of knowledge production at province level in Italy.
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Figure 6.Territorial distribution of patent stock.
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Figure 7 Territorial distribution of patent intensity..
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Figure 8 Territorial distribution of publication stock.
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Figure 9 Territorial distribution of publication intensity.
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Figure 10 Territorial distribution of publication in Engineering and Technology- stock.
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Figure 11 Territorial distribution of publication Engineering and Technology- intensity.
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4. Main results

4.1 Size effects

The first group of models introduce external factors in absolute value. In particular we explore how 
the efficiency of manufacturing is affected by the presence in the same province of the following 
external knowledge factors:
(a) PAT TOT: cumulate number of EPO patents at province level (year 1998-2003);
(b) PUB TOT: cumulate number of ISI scientific publications at  province level (year  1990-
2000);
(c) PUB  ENGTECH:  cumulate  number  of  ISI  scientific  publications  in  engineering  and 
technology fields (year 1990-2000).
By introducing these variables in absolute terms we are interested in checking size effects, or effects 
on production activity that may take place as result of the overall size of knowledge production 
activity, as observable from patents or publications.
We first explore the effects of each external factor separately, limiting to (a) and (b) and examining 
sectoral effects afterwards. 
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Figure 12. Impact of size of patent activities on production efficiency
Inputs: X1=ULA IND, X2=IP, X3=KPRIV, Outputs: Y=VA IND, External factors: Z= Patent size 
(PAT TOT) 

Figure  12  shows  the  variation  of  the  ratios  of  robust  conditional  and  unconditional  efficiency 
measures (Qz

m) in relation to the total volume of patents at province level. There are several effects 
of interest. First, as witnessed by the upward slope in the initial region, the overall effect is positive, 
reaching a peak value of 1.5 for the outlier province of Milan and values beyond 1.05 for many 
provinces, up to 1.2. Second, most provinces are located in the first region of the plot, in which the 
total volume of patent activity is small (less than 200 cumulate patents per province) and the ratio 
takes value 1 or close to 1. This means that for most provinces the spillover effect from patenting 
activity is negligible. Third, there is a size effect. The ratio increases significantly after the threshold 
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of approximately 200 cumulate patents per  province.  This is  an important finding,  that  will  be 
discussed below.

Figure 13 examines the effect of the volume of scientific publications at province level. It shows a 
positive effect, up to the peak value of 1.5, again for the province of Milano and Rome (not shown 
in the figure). However, most provinces in the positive-sloped region are located around a value of 
1.1, which is lower than the one observed for patents. In addition, there seems to be a threshold 
around 5000 cumulate  publications,  given that  below this  value provinces are located in a  flat 
region where  Qz

m is  close to 1 (no impact  of  knowledge).  Interestingly, in  the  interval  beyond 
15.000 cumulate   publications we can find both large university cities (Roma, Milano,  Napoli, 
Torino etc.)  but  also  medium-sized  cities  with  strong university  and  research  activity  such  as 
Padova, Pavia, Pisa and Trieste. Figure 4 shows also that the peak value for these provinces is 
around 1.05-1.1. 
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Figure 13. Impact of size of total publication activities on production efficiency
Inputs: X1=ULA IND, X2=IP, X3=KPRIV, Outputs: Y=VA IND, External factors: Z= Publication 
size (PUB TOT). Below, list of the provinces with PUB TOT higher than 15000.

Province PUB 
TOT

Milano 90140
Roma 88939
Bologna 35515
Padova 33491
Napoli 32088
Torino 29353
Firenze 27517
Pisa 26837
Genova 25444
Pavia 21888
Trieste 19007
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The examination of separate effects of patents and publications points to the existence of positive 
but small impact, subject to important threshold effects.
Let us examine the joint impact of the overall volume of patents and publications. This is possible 
in a 3-d plot, in which the two external factors are represented on the horizontal plane according to 
their value, and the vertical axis shows the value of the Qz

m ratios (now the ratios are obtained by 
dividing  the  conditional  measure  of  efficiency  -in  which  the  external  factors  are  patents  and 
publications- on the unconditional measure). 
Figure 14 shows several extremely interesting findings. First of all, while publications and patents 
taken separately show that the maximum value, at around 1.5, is reached only by the outlier value 
(Milano) and the rest of the distribution lies in the 1.05-1.2 region, when the external factors work 
jointly they create a region on top of the hyperplane, where the overall ratio is around 1.4. This 
suggests a strong complementarity effect between the knowledge generated in the public research 
system  and  the  technological  knowledge  incorporated  in  the  inventive  activity  in  companies. 
Second, the shape of the hyperplane suggests, again, that a certain threshold is at work. As a matter 
of fact the value of  Qz

m ratios drop sharply when provinces leave apart from the maximum absolute 
values in both publication and patent activities.
As showed by Daraio and Simar (2007), the conditional technique permits also to investigate the 
effect of each of the external factors when the other is fixed at a certain level. For this purpose, it 
may be useful to define the fixed values in terms of quartiles. 
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Figure 14 Combined effect of publications and patenting activities on the productivity performance. 
Surface of QZm on Z1 and Z2.
Inputs: X1=ULA IND, X2=IP, X3=KPRIV,  Outputs: Y=VA IND, External factors: Z1= Patent size 
(PAT TOT), Z2=Publication size (PUB TOT) (m=35, alpha=0.97)

Figure 15 shows in the top panel the variation of the Qz
m ratios when the external factor Z1 (PAT 

TOT) is allowed to vary in its interval, for each quartile of the distribution of the external factor Z2 
(PUB TOT).
The picture shows that there is not much difference in the effect on efficiency of the variability of 
patents according to the level of publications (the three lines are close to each other in the space). 
Confirming the finding from previous figures, the top panel shows that a jump in the 92 Qz

m ratios 
is obtained only beyond a large number of patents per province, approximately a cumulate value of 
2000, meaning that very few provinces benefit from the external factors.
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The bottom panel shows a different story, which is very interesting. If we allow the number of 
publications to vary along the horizontal axis, there is a positive but small effect in the efficiency of 
production if there are few patents (bottom quartiles, shown as the almost flat lines at the bottom of 
the figure). Interestingly, if there are instead many patents, then the overall impact of publications is 
very strong, and the ratios jump from 1.2 to 1.4.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.8

1

1.2

1.4

1.6

Z1

Q
z m

0 1 2 3 4 5 6 7 8 9 10

x 104

0.8

1

1.2

1.4

1.6

Z2

Q
z m

 

 

First  quartile
Median
Third quartile

Milano

Roma Torino

Napoli

Padova

Bologna

Figure 15  Combined effect of publications and patenting activities on the productivity performance
Inputs: X1=ULA IND, X2=IP,X3=KPRIV, Outputs: Y=VA IND, External factors: Z1= Patent size (PAT 
TOT), Z2=Publication size (PUB TOT). Top panel: smoothed nonparametric regression of Qz

m on Z1 for 
Z2’s quartiles. Bottom panel: Smoothed nonparametric regression of Qz

m on Z2 for Z1’s quartiles. Dashed 
line (--) first quartile, solid line (-) median, dashdot line (-.) third quartile.

This  joint  analysis  strongly confirms the importance of complementarity but  also defines more 
precisely the direction of complementarity: it does not make much difference having more or less 
publications if the volume of patent increases, while it makes a large difference to have a large 
volume of scientific activity in a province, depending on whether in the same territory we also have 
large technological activity as represented by patents.
We find this result as a strong confirmation of the role of absorptive capacity at territorial level. If 
the local economy and society do not have sufficient accumulation of human capital, organizational 
capital, and entrepreneurship, the local impact of scientific activity may be negligible. There is no 
reason, in principle, why local research activity should benefit exclusively the local economy. 

4.2 Intensity effects
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The previous analysis has shown that the volume of public and private knowledge production in a 
given territory influences positively the technical efficiency of the industrial system located in the 
same territory. Let us address here a different question- whether a positive spillover effect is visible 
once we do not consider the absolute volume of knowledge production, but its intensity, that is, 
considering the relation between the volume and the underlying population.
As a measure of intensity we consider the ratio between the number of patents and publications and 
the total resident population, i.e. patents per million of inhabitants (PAT INT), and publications per 
million  of  inhabitants  (PUB  INT).  This  gives  a  rough  measure  of  the  relative  importance  of 
knowledge production over the general social and economic activity of a territory4. 
The difference between size and intensity effects is  particularly important  in  the case  of small 
provinces  in  terms  of  population and value  added,  in  which  however  a  large concentration  of 
scientific and technological activity takes place. Do these territories produce knowledge spillovers 
of the same magnitude of large cities?
Figure 16 examines the effect of a single external factor, the intensity of patents over the population. 
The effect is clearly positive, reaching a peak value of 1.4.  
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Figure 16. Impact of the intensity of patent activities on production efficiency

Figure 17 shows the effect of total publication intensity. The overall effect, as represented by the 
fitting line, is only weakly positive. The maximum observed value is 1.4 and a few provinces are 
located around the value of 1.2. The LOESS line, however, is almost flat. This finding suggests, 
perhaps not surprisingly, that patent intensity is quantitatively more important, on the average, than 
publication intensity, for the efficiency of the manufacturing system.
At the same time several medium-sized, research-oriented  provinces, such as Parma, Siena and 
Padova are located above the fitting line, suggesting a larger positive effect (although the magnitude 
is very small).
To our surprise, this finding also holds for publications in engineering and technical fields (Figure 
18), whose profile almost completely overlaps with the general type of publications. Again, a small 
number of very active provinces are located around the value of 1.2, suggesting that local 
development can indeed be fostered by research intensity in technical fields, but as an exception 
rather than a rule.

4 In future developments we will introduce other intensity measures, using GDP or industrial value added.
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Figure 18. Impact of the intensity of engineering  publications on production efficiency

Figure 19 investigates the joint effect of patent and total publication intensity. Surprisingly, here the 
maximum  value  of  the  Qz

m ratios  is  not  obtained  when  both  external  variables  are  at  their 
maximum. Rather, the peak value is located in the region in which publication intensity is at the 
maximum but patent intensity is at an intermediate level, somewhat below the maximum level. This 
means that, when the two external factors of knowledge spillover are taken together in terms of 
intensity, and not absolute value, the threshold effect is smaller. In addition, the region at the top is 
smaller.
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Surface of Qz
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Figure 20 gives a view of complementary effects. The overall effect of patent intensity is positive 
for all quartiles of publication intensity (top panel), with few distinctions among quartiles. On the 
contrary, the impact of publication intensity is moderately positive, but it becomes steady or even 
slightly negative after  a  certain threshold,  at  around 6000 cumulate publications per  million of 
inhabitants. 
Summing up, we find an overall positive effect of publication and patent intensity, but this effect is 
smaller  than  the  one  observed  for  the  volume  of  knowledge  spillover.  The  two  effects  are 
complementary. This means that territories in which the total volume of knowledge production is 
limited but the intensity is strong can exploit knowledge spillovers.
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4.3 Specialization effect

Finally,  we  are  interested  to  understand  whether  the  production  of  knowledge  is  subject  to 
specialization effects. In particular, we investigate the effect of scientific publications in engineering 
and  technical  fields  together  with  patent  activity. For  the  sake  of  brevity  we  omit  the  figures 
(available from the authors) and report only the findings.
Basically the impact of engineering publications intensity (PUB ENGTECH INT), when associated 
to patent intensity, is similar to the general case.  This suggests the notion that the bulk of effect 
from scientific activity in a give territory is captured by engineering and technical fields. This is 
confirmed by  the  joint  effect, whose shape closely  follows the  one  found for  all  publications. 
Summing up, it seems that the knowledge spillover from engineering and technical fields follows 
the same pattern of general publications.

4.3 Summary of findings and policy implications

We have  investigated  the  magnitude and distribution of  knowledge spillovers  from the  overall 
volume  of  patenting  and  publication  activity, from the  intensity  of  this  activity, and  from the 
sectoral specialization of publications.
The introduction of  conditional  efficiency analysis  has  offered a  powerful  tool  to  examine the 
spillover effect without including knowledge as a separate input, given that knowledge is at the 
same time an input and an output.
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We have found strong positive size effects and moderate positive intensity effects. In both cases 
patenting and publications are strategic complements, but the effect is stronger in volumes than in 
intensity. 
Provinces with maximum volume in both patents and publications exhibit the strongest spillover 
effect.  Alternatively,  medium-sized  provinces  with  high  knowledge  intensity  also  witness 
knowledge spillovers, but with less magnitude.
This new technique, therefore, permits to identify and quantify several important dimensions of 
spillover.
First,  large metropolitan areas in which both publication activity  and patenting are  intense and 
exceed a given threshold benefit from the largest spillover. These areas are the only ones candidate 
for real agglomeration effects. Agglomeration requires both size and intensity effects. This finding 
offers a key to understand the massive process of geographic concentration of innovative activities 
observed in Europe. To be attractive for public research and for industrial R&D a territory must 
exhibit both large absolute volume of activity and high intensity. The size effect constitutes a large 
talent pool in the labour market and promotes the division of innovative labor. The intensity effect 
ensures that the social and economic system are conducive to innovation, since the administrative 
and  political  system, the  interest  groups,  the  cultural  forces  will  be  influenced by  the  relative 
strength of research activities.
Second, territories that lack a volume effect may still benefit from knowledge spillovers, but on a 
smaller scale. This effect is unlikely to generate agglomeration and attractiveness. Provinces with 
high research intensity benefit from a small to moderate spillover to industry, but  this effect is 
conditional on a minimum level of activity in patents. Provinces with a strong industrial base are 
those that benefit more from the abstract and general knowledge produced at universities. This is 
confirmed  by  specialization  effects:  the  spillover  is  mainly  generated  by  scientific  activity  in 
engineering. This is usually associated with large and/or research-oriented engineering faculties, 
that have a positive effect on the quality of graduates in local labor markets.
Third,  spillover  effects  disappear  at  low  levels  of  scientific  and  technological  activity. Most 
provinces are located in the flat region of the conditional efficiency ratios, suggesting the absence of 
or extremely low impact of knowledge spillovers.
These  findings  have  strong  policy  implications.  In  recent  times  many  local  and  regional 
governments have invested into innovation policies with the implicit or explicit goal of creating 
conditions for local agglomerations of high tech activities,  usually associated with attraction of 
foreign investment, or so called territorial marketing. Our findings suggest that these policies may 
be totally misleading.
There are only three appropriate policies that try to link knowledge spillovers with an impact on 
local development:
(a) concentrate  innovative  investment  into  large  metropolitan  areas  in  order  to  be  able  to 
compete internationally in the battle for attractiveness of public and private research locations and 
large talent pools;
(b) consolidate public investment in medium-sized research oriented territories, and at the same 
time invest heavily into the complementarity between public research and technological private 
activity in order to maximize the spillover;
(c) do  nothing.  Or, better:  consider  that  the  university  systems is  mainly  aimed at  creating 
generic good quality human capital and capabilities, without significant spillover from research and 
even less attraction and agglomeration effects.

Our findings suggest that public resources are misallocated if governments try to obtain goals (a) in 
those territories that, in reality, are in position (b), and try to obtain goals (b) in those territories that, 
at a better exam, are in position (c). Even worse, often regional and local governments claim they 
can reach goals in (a) when they are barely at (c). 
It must be clear that our results do not assume that the rationale for creating universities or research 
centers is local spillovers. Scientific and higher education institutions have, by nature, a national 
and international scope. They have enormous value.
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Public investment should be directed to maximize spillovers that can be realistically expected given 
the  size  and  intensity  of  both  scientific  and patenting activity. Trying to  change  the  territorial 
trajectory is of course legitimate, but the resources needed must be made consistent with long term 
changes.

5. Conclusions and future developments

The issue of  knowledge spillover  has  received a  crucial  role  in several  theories  of innovation, 
growth and geography. Despite the large theoretical importance, the identification and measurement 
of  spillovers  has  proved  elusive.  We suggest  that  one  reason  for  this  state  of  affairs  is  a 
methodological weakness of currently used econometric techniques. In particular, the widespread 
use of production functions and related regression-based estimation techniques do not permit the 
identification of local effects and of external effects.
Local effects may take place because the impact of knowledge on productivity depends very much 
on several contextual factors, so that any average estimation (for example across firms, industries, 
or territories) does not capture the inherent heterogeneity. In practice, we have seen that the impact 
of knowledge spillovers is of little magnitude on the aggregate, but exhibits large differences across 
units  of  analysis.  Capturing  the  average  effect  via  regression  analysis  does  not  allow  the 
examination of individual cases, that are of the largest interest for the literature and policy makers. 
Conditional  efficiency  permits  the  calculation  of  spillover  effects  attached  to  each  units  of 
observation, opening room for a rich interpretation.
Furthermore, the problem of spillover is subject to a dilemma in the econometric specification. 
Either we include some proxy of knowledge (R&D expenditure, R&D stock, knowledge stock and 
the  like)  directly  in  the  equations,  or  we  derive  spillover  effects  indirectly  (for  example,  by 
computing the difference between private and social rates of return). In the former case the notion 
of spillover is equated to the cross-unit elasticity, introducing a strong (but unwarranted) causality 
assumption. 
Including knowledge as an input means assuming that the level of production (value added) is 
determined, inter alia, by the level of investment into knowledge, whatever the specification. But 
knowledge is at the same time an input to the production process and an output. More generally, we 
do not know whether knowledge acts mainly on the input or the output side. In particular, if R&D 
investments are decided by companies following financial accounting rules (such as x% of turnover 
per year) then an endogeneity problem applies.
In the latter we are left with an order of magnitude of spillover effects, which may be of great 
interest but leaves the econometric problem unsolved.

The introduction of robust conditional efficiency analysis addresses some of these problems and 
offers  an  attractive  alternative.  By  eliminating  any  assumption  about  the  shape  of  production 
function,  nonparametric  efficiency  analysis  offers  more  flexibility.  By  producing  scores  of 
conditional efficiency at individual level, it makes it possible to examine local effects, and at the 
same time to compute aggregate spillover effects. By placing proxies of knowledge as external 
factors, it does not ask to make assumptions about the role of knowledge as factor of production or 
input, as opposed to a joint product of productive activity or output.
We have shown how this flexible tool allows the exploration of some of the most debated issues in 
the literature on knowledge spillovers.
This technique opens the  way to a number of future developments.  First,  we might extend the 
geographic scope of the analysis at European level (NUTS 2 or NUTS 3). Second, an extension of 
the model to tertiary activities would be an interesting development. Third, the external efficiency 
analysis might be combined to other spatial dependence models, introducing as external factors 
measures of geographic proximity with more complex formulae than the simple one used for this 
paper. After  these  extensions  are  tested,  an interesting area  of  research would imply  including 
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robust efficiency estimates in input-output models of the economy, allowing for a direct estimate of 
spillovers. This would be a great advancement in the literature.
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Appendix on robust nonparametric methods in efficiency analysis

In efficiency analysis the main purpose is the study of how firms combine their inputs to obtain 
their outputs. More generally, in an activity analysis framework (see e.g. Debreu, 1951; Shephard, 
1970),  the management  of  a Decision Making Unit  (DMU) is  characterized by a set  of  inputs 

px R  used to produce a set of outputs qy R . The set of technically feasible combinations of (x, 
y) is defined as:

In this setting, the Farrell measure of output-oriented  efficiency5 for a firm operating at the level (x,  
y) can be defined as:

where ( , ) 1x yλ   is the proportionate increase of outputs a DMU working at the level (x, y) should 
perform to achieve efficiency, and 1/ λ  is the Shepard output distance function (Shephard, 1970). 
The efficient frontier corresponds to those firms where ( , ) 1x yλ  . See Figure 1A for a graphical 
representation of the production set and the situation of a DMU A which produces an output  yA 

using  xA input.  For  sake of representation  we illustrate  a  simple univariate  frontier, even if  an 
advantage of  nonparametric  methods is  their  multi-input  multi-output  description of  production 
technology. Of course the true efficient frontier is not known and has to be estimated using a sample 
of production observations.

Figure 1A. Production set and efficient frontier: an illustration.

In efficiency analysis, the nonparametric approach is based on envelopment techniques, whose main 
estimators  are  Data  Envelopment  Analysis  (DEA, see  Farrell,  1957,  and Charnes,  Cooper  and 
Rhodes,  1978)  and  Free  Disposal  Hull  (FDH,  see  Deprins,  Simar  and  Tulkens, 1984).  These 
estimators  rely  on  the  idea  that  the  attainable  set  is  defined  by  the  set  of minimum volume 

5 To save space, in this appendix we only present the output oriented case that we applied in the empirical analysis.
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containing all  the observations. The DEA estimator relies on the free disposability6 and on the 
convexity of the set ψ , whereas the FDH relies only on the free disposability assumption. The FDH 
estimator of  ψ , based on a sample of  n  observations  ( , )i ix y , is the free disposal closure of the 

reference set  It can be defined as:

The DEA estimator of ψ , is the convex closure of FDHψ :

The estimated output oriented FDH efficiency score of a firm (x ,  y)  is given by:

Similarly, the estimated output oriented DEA efficiency score of a DMU (x , y) is given
by:

The nonparametric approach in efficiency analysis offers several advantages, among whose:
- absence of specification of the functional form for the input-output relationship;
-  measurement  of  the  efficiency with  respect  to  the  efficient  frontier  which measures  the  best 
performance that can be practically achieved;
- appropriate benchmark to be used for comparison: non requirement of any theoretical models as 
benchmarks;
- production of multi-inputs multi-outputs performance indicators.

One of the main drawbacks of DEA/FDH nonparametric estimators is their sensibility to extreme 
values and outliers in the data. 
To  overcome  this  methodological  limitation,  Cazals,  Florens  and  Simar  (2002)  propose  a 
nonparametric estimator of the frontier, more robust to extreme values and outliers. It is based on 
the concept of the expected maximum output function of order-m.
Extending these ideas to the full multivariate case, Daraio and Simar (2005)  define the concept of 
expected  order-m  output  efficiency  score.  This  robust  approach  is  based  on  a  probabilistic 
formulation of the model. The production process is described by the joint probability measure of 
(X, Y ) on p qR R  . In this formulation, the support of (X, Y ) is the attainable set ψ  and the Farrell
output efficiency can be characterized, under the free disposability assumption, as:

where  A  nonparametric  estimator  of  
( , )x yλ

 is 
provided by plugging in the equation above the empirical version of ( | )YS y x  given by:

6 
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It has been shown that the resulting nonparametric estimator coincides with the FDH estimator 
defined above.
The order-m output efficiency7 can be defined as in Daraio and Simar (2005): for a given level of 
inputs x in the interior of the support of X, consider m i.i.d. random variables 1,...,iY i m   

generated by the conditional q-variate distribution function 

 and define the set:

Then, for any y, we may define:

The variable ( , )m x yλ©  is a random variable because the ( , )m x yψ  is random.
For any qy R  the (expected) order-m output efficiency measure denoted by ( , )m x yλ  is defined for 
all x in the interior of the support of X as:

It has been shown that  ( , ) ( , )m x y x yλ λ  as  m . A nonparametric estimator of  ( , )m x yλ  is 
given by:

Hence, in place of looking for the upper boundary of the support of ( | )YS y x , as was typically the 
case for the full-frontier and for the efficiency score ( , )x yλ , the order-m efficiency score can be 
viewed as the expectation of the maximal output efficiency score of the unit (x; y), when compared 
to m units randomly drawn from the population of units producing using less inputs than the level x. 
This  is  certainly  a  less  extreme  benchmark  for  the  unit  (x;  y)  than  the  “absolute"  maximal 
achievable level of outputs: it is compared to a set of  m  peers (potential competitors) producing 
using less than its level  x  of inputs and we take as benchmark, the  expectation  of the maximal 
achievable output instead of the absolute maximal achievable output. 
Then, for any qy R , the expected maximum level of outputs of order-m is defined as

 which can be compared with the full-frontier .
The robust nonparametric methodology we applied in this paper adds some new advantages to the 
traditional nonparametric approach (DEA/FDH):

- As the robust indicators are based on estimators that do not envelop all firms, they are more robust 
to outliers and noise in the data which may strongly influence the nonparametric estimation of 
efficiency. The level of robustness can be set  by means of  m  (tuning parameter).  The level of 
7 Here again, we only describe the output-oriented case. For a general presentation of the probabilistic approach in 
efficiency analysis, see Daraio and Simar (2007).
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robustness may be tuned by the percentage of points remaining above the order-m frontier. Clearly, 
when m  this percentage goes to zero.

The robust nonparametric indicators avoid the  curse  of dimensionality,  typically shared by non-
parametric estimators, meaning that to avoid huge confidence intervals and imprecise estimation 
thousands of data are required. The order-m indicators are  n -consistent estimators whereas the 
DEA  are  only  2 /( 1)p qn   -consistent  estimators  ( 1/( )p qn   for  the  FDH).  This  indicates  for  the 
DEA/FDH the necessity of increasing the number of observations when the dimension of the input-
output space increases to achieve the same level of statistical precision;

- The order-m indicators allow to compare samples with different size, in an indirect way, avoiding 
the sample size bias, of which nonparametric indicators (DEA/FDH) suffer. In this case, m plays an 
important role. The benchmark, in fact, is not made against the most efficient units in the group, but 
against an appropriate measure drawn from a large number of random samples of size m within the 
group. In this way size-dependent effects are eliminated.
- The possibility of explaining efficiency, considering the conditional influence of external factors  
Z on the full frontier and on its robust counterpart (see below).

- Using this approach, it is possible to decompose the performance of a firm (x; y), as measured by 
the Conditional Efficiency index in three main indicators: an indicator of the internal or managerial 
efficiency, an externality index, and finally, an individual index.

- Moreover, we can evaluate the effect of external/environmental Z variables on the performance of 
firms in different economic  scenarios,  contemplating various numbers of  potential  competitors, 
using the parameter m in its dual meaning.

-  Parametrization and robust  elasticities  are available by applying the two-steps semiparametric 
estimators  (based on FDH and order-m  frontiers)  introduced by Florens and Simar (2005)  and 
extended to the multioutput case by Daraio and Simar (2007).

External or environmental conditions may strongly influence the productive efficiency evaluation.
In the efficiency literature, mainly three approaches have been developed8: a one-stage approach, a 
two-stage  approach  and a  bootstrap-based two stage  approach  as  in  Simar  and Wilson (2007). 
Nevertheless, all of them are based on restrictive assumptions on the data generating process and/or 
on the role of these external factors on the production process. 
Based on the probabilistic formulation presented above, Daraio and Simar (2005) propose a general 
full  nonparametric  approach  that  overcomes  most  drawbacks  of  previous approaches.  The 
probabilistic  formulation  allows  an  easy  introduction  of  additional  information  provided  by 
external- environmental variables rZ R . Hence, the joint distribution on (X; Y ) conditional on Z = 
z defines the production process if the external factor Z = z.
The output efficiency measure under the condition Z = z can be defined as:

where   A  nonparametric  estimator  of 

that requires some smoothing in z, is provided by the following kernel estimator of 
the empirical version of ( | , )YS y x z :

8 See Daraio and Simar (2005) and the references cited there.
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where K(.) is the kernel and hn is the bandwidth of appropriate size.9 
In a similar way, mutatis mutandis, Daraio and Simar (2005) introduce also the conditional order-m 
measures of efficiency with their nonparametric estimators. For the output-oriented case, the order-
m measure of efficiency is defined as:

and its nonparametric estimator is obtained as follows:

When  m ,  we recover the full  frontier conditional measures, but for finite  m,  ,
ˆ ( , | )m n x y zλ  

provides a more robust estimator of the frontier, robust to extremes or outliers.

The procedure for evaluating the effect of Z on the production process is based on the comparison 
of  the  conditional  FDH  measure  ˆ ( , | )n x y zλ  with  the  unconditional  FDH  measure  ˆ ( , )n x yλ . 
Accordingly, the same comparison is done for the robust order-m efficiency measures. In particular, 
the  ratios  ˆ ˆ( , | ) / ( , )z

n nQ x y z x yλ λ  (and  their  robust  version  , ,
ˆ ˆ( , | ) / ( , )z

m m n m nQ x y z x yλ λ )  are 
useful  to  investigate  on  the  effects  of  Z  on  performance:  if  1zQ  ,  then  the  conditional  and 
unconditional efficiency measures are equal: this means that Z does not affect the performance of 
the analysed firm; if zQ  is much lower than 1, this means that the firm has been highly influenced
by Z.
When  Z  is univariate,  the scatterplot of these ratios against  Z  and its smoothed non-parametric 
regression line is also very helpful in describing the effect of these external-environmental variables 
on the production process. In the output oriented case (used in this chapter), we have:
-  An  increasing  smoothed nonparametric  regression  line denotes  a  Z  that  is  favourable  to  the 
production process. In this framework, a favorable Z means that the environmental variable operates 
as a sort of “extra" input  freely available: for this reason the environment is “favourable” to the 
production process. 

- A decreasing smoothed nonparametric regression line indicates a  Z  that is  unfavourable  to the 
production  process.  In  this  case,  the  environmental  variable  works  as  a  “compulsory”  or 
unavoidable  output to be produced to face the negative environmental condition.  Z  in a certain 
sense penalizes the production of the outputs of interest. 
-A straight   nonparametric  regression  line  shows  that  Z  does  not  have  any  influence  on  the 
production process.

Daraio and Simar (2007, section 5.4.1 and section 6.4)  have shown the usefulness of robust ratios 
in reveiling the impact of external factors when extreme points or outliers in Z are present and mask 
the effect of Z applying full frontier ratios.  

Here we point out the clear interpretability of these kind of scatterplots. As we have seen in the 
empirical results section, the analyst has an immediate view on the global effect of external factors 

9 For more information see Daraio and Simar (2006) that propose a simple data-driven method for the choice of the 
bandwidth useful also in the case of multivariate external factors.
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on the performance: an increasing line indicates a positive influence of the factor, a decreasing line 
points to a negative effect and a straight line reveals no influence of the factor on the performance.

This nonparametric approach, with its robust counterpart, offers a rigorous methodology to identify 
the  factors  that  might  influence  firms  efficiency  by  measuring  their  global  effect  on  the 
performance. It gives also the possibility to analyse the effect of these variables on each individual 
firm. The performance of a DMU (x, y), measured by the Conditional Efficiency index, ˆ ( , | )n x y zλ , 
can be decomposed in three main indicators (see Daraio (2003) for more details):
1. An unconditional efficiency score ˆ ( , )n x yλ that represents the internal or managerial efficiency;
2. An externality index  defined as the expected value of the ratios zQ  given the value of z owned 
by the firm.
3. An individual index defined as )|(/ zZQEQ zz  . It compares the value of zQ  with the value we 
would expect for it, given its value of Z. It represents the firm's expected intensity in catching the 
opportunities or threats by the environment (external factor).
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